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Abstract

The demographic rates (e.g., birth, death, migration) of many organisms have been shown to respond strongly to short- and
long-term environmental change, including variation in temperature and precipitation. While ecologists have long accounted
for such nonhomogeneous demography in deterministic population models, nonhomogeneous stochastic population models
are largely absent from the literature. This is especially the case for models that use exact stochastic methods, such as
Gillespie’s stochastic simulation algorithm (SSA), which commonly assumes that demographic rates do not respond to
external environmental change (i.e., assumes homogeneous demography). In other words, ecologists are currently accounting
for the effects of demographic stochasticity or environmental variability, but not both. In this paper, we describe an
extension of Gillespie’s SSA (SSA+) that allows for nonhomogeneous demography and examine how its predictions differ
from a method that is partly naive to environmental change (SSAn) for two fundamental ecological models (exponential
and logistic growth). We find important differences in the predicted population sizes of SSA+ versus SSAn simulations,
particularly when demography responds to fluctuating and irregularly changing environments. Further, we outline a
computationally inexpensive approach for estimating when and under what circumstances it can be important to fully account
for nonhomogeneous demography for any class of model.

Keywords Demographic stochasticity - Environmental change - Stationary - Non-stationary - Homogeneous -
Nonhomogeneous - Environment-dependent demography - Stochastic simulation algorithm - Poisson process

Introduction

Ecologists use stochastic population models to account for
intrinsic sources of population variability, particularly the
variability arising from probabilistic demographic events at
the individual level (e.g., random births and deaths), also
known as demographic stochasticity. The importance of
accounting for demographic stochasticity in populations is
well established in the theoretical literature, where it has
been shown to increase extinction risk (Shaffer 1981; Lande
1993; Ovaskainen and Meerson 2010), alter coexistence
patterns (Orrock and Fletcher 2005; Orrock and Watling
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2010; Okuyama 2015; Pedruski et al. 2015; Hart et al.
2016), increase the persistence time of disease (Bartlett
1957), and reduce spatial synchrony in metacommunities
(Simonis 2012).

For continuous-time population models, the effects of
demographic stochasticity can be approximated by adding
white noise terms to differential equations (turning them
from deterministic differential equations into stochastic dif-
ferential equations (SDEs); e.g., Allen 2016) or by embed-
ding such equations into standard probability distributions
with an appropriate scaling term for the variance (e.g., the
system-size expansion; van Kampen 1992). However, these
approximations are generally accurate only for predicting
small deviations from the expected value of the stochas-
tic process (e.g., near stable equilibria; van Kampen 1992;
Ovaskainen and Meerson 2010; Black and McKane 2012),
and can fail to predict large deviations, such as those lead-
ing to population extinction (e.g., Wilcox and Possingham
2002; Doering et al. 2005; Kessler and Shnerb 2007). When
predicting large deviations is important (e.g., for predicting
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extinction risk or modeling populations not at equilibrium),
population models can be reformulated in terms of a set
of differential equations that exactly describes the time-
evolving probability density of the system (also known
as Kolmogorov forward equations (Kolmogoroff 1931), or
master equations). In practice, solving Kolmogorov forward
equations is often infeasible (even numerically) for ecolog-
ical systems (Keeling and Ross 2008), particularly those
where the state space is large (e.g., systems with many
species). A convenient alternative, which effectively sam-
ples from the probability density one would obtain by solv-
ing the forward equation, is Gillespie’s stochastic simulation
algorithm [SSA] (Gillespie 1977). Due to its tractability and
the relative ease and speed of implementing the algorithm,
the SSA is now commonly used in ecology to account for
and explore the effects of demographic stochasticity in pop-
ulations and communities (e.g., Kolpas and Nisbet 2010;
Kramer and Drake 2010, 2014; Simonis 2012; Yaari et al.
2012; Gokhale et al. 2013; Huang et al. 2015; Vestergaard
and Génois 2015; Nisbet et al. 2016; Palamara et al. 2016).

An important limitation of the SSA as it is currently
used in ecology, is that it treats demographic processes,
such as birth or death, as time-independent (i.e., as
homogeneous [or stationary] Poisson processes). In other
words, it assumes that the demographic rates of individuals
depend only on internal state variables, such as population
size, and otherwise do not change over time. This
assumption may be adequate over short-time scales or
when environmental conditions are constant (or tightly
controlled), but is otherwise unrealistic. In natural systems,
individuals often respond to factors that are external to
typical population models and which themselves change
over time. For example, the demographic traits (e.g.,
growth rate, birth rate, movement rate, feeding rate) of
many species respond to temperature (Parmesan 20006;
Deutsch et al. 2008; Angilletta 2009; Dell et al. 2011)
and may change frequently within individual lifetimes
as a result of short- or long-term temperature variability
(e.g., Miquel et al. 1976; Kingsolver et al. 2013, 2015;
Paaijmans et al. 2013; Estay et al. 2014; Stroustrup et al.
2016). Similarly, plant growth is strongly associated with
precipitation (e.g., Novoplansky and Goldberg 2001; Fay
et al. 2003; Angert et al. 2007; Heisler-White et al.
2008), an external factor which, like temperature, may vary
considerably over the lifespan of an individual. The strong
link between demography and changing environments
is why ecologists routinely incorporate directional (e.g.,
increasing) or regular (e.g., fluctuating as a sine function)
environmental change in deterministic models. Numerous
studies have also considered the effects of environmental
change in continuous-time stochastic models (e.g., Kaplan
1973; Mangel and Tier 1993; Marion et al. 2000; Allen
et al. 2005; van den Broek and Heesterbeek 2007;
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Varughese and Fatti 2008), but such studies generally
use approximations involving moment closure, or use
solutions to partial differential equations for probability
generating functions (Bartlett 1955), which are known
only for a few, simple ecological models (e.g., the
linear birth-death process, Kendall (1948)). In comparison,
SSA approaches are exact (given a sufficient number of
simulations), may be used to simulate complex linear
or non-linear processes, and require only the underlying
intensity functions (i.e., demographic rates or transition
probabilities) to be implemented. To our knowledge,
no studies have considered the effects of environmental
change and environment-dependent demography in SSA
simulations. Thus, ecologists presently lack a tractable,
efficient method for forecasting the effects of environmental
change in realistic populations and communities.

Here, we describe an extension of the SSA that accounts
for nonhomogeneous demography and allows demographic
trait(s) to respond to nearly any kind of environmental
change. Further, we explore how, under a variety of realistic
environmental change scenarios, predictions using this
method differ from the traditional, homogeneous SSA for
models of exponential, and logistic growth (Verhulst 1845;
Pearl and Reed 1920). We show that using a homogeneous
(or stationary) SSA when demography is nonhomogeneous
can lead to biased predictions about the effects of
stochasticity on populations. Finally, we also outline a
straightforward and computationally inexpensive approach
for estimating in advance when ignoring nonhomogeneous
demography will bias predictions of population size.

Methods
Nonhomogeneous demography in non-SSA models

Nonhomogeneous demography can be easily incorporated
into standard deterministic models, either by converting
one or more demographic parameters (e.g., birth rate) into
time-dependent functions or, if demography is nonhomo-
geneous because of some external factor like temperature,
by adding that factor as a new state variable and linking
it to the relevant parameter(s) with an appropriate param-
eter or function (also known as a coupling factor; van
Kampen 1992). This approach can also be used for stochas-
tic differential equations (SDEs), since they are essentially
deterministic equations either embedded in standard distri-
butions or with added white noise terms that are independent
of demographic rates or environmental variability. However,
as previously discussed, these approximations commonly
fail, particularly when there are large deviations from an
equilibrium, as might be expected during rapid environmen-
tal change. As an exact approach to modeling stochasticity,
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the SSA has the potential to avoid such failings. How-
ever, additional challenges arise when trying to use it when
demography is nonhomogeneous.

Gillespie’s stochastic simulation algorithm (SSA)

We begin by describing the traditional (homogeneous) SSA
(Gillespie 1977), also known as the direct method, and use
a simple exponential growth model to illustrate the issue
of nonhomogeneous demography. Other implementations
of the algorithm have been proposed, such as the tau-leap
method (Gillespie 2001), all of which sacrifice accuracy for
simulation speed. As a result, we will not address these less
accurate implementations here.

The basic SSA can be conceived of as iteratively answer-
ing two questions: (1) When does the next demographic pro-
cess (e.g., birth, death) occur? and (2) Which demographic
process occurs? It has four steps (Gillespie 1977):

1. Set the rates/intensities of all demographic processes
(i.e., the probability the processes occur, per unit
time), the effects of those processes (e.g., birth = +1
individual), the starting population size(s), and the end
time of the simulation.

2. Determine the inter-event time (i.e., waiting time), t,
until the next demographic event by sampling from an
exponential distribution with mean equal to the sum of
the rates of all demographic processes.

3. Determine which demographic event occurs by sam-
pling from the list of possible processes, the probability
of each process conditioned on the fact that an event (of
any kind) has occurred at ¢ 4 7.

4. Update the time based on (2) and update population
size(s) based on (3) [this may also change future
demographic rates if they depend on population size],
then return to step 2 until all demographic rates are zero
or the end time has been reached.

Implementing the above algorithm is straightforward for
most ecological models, the most difficult aspect often
being the creation of the rate function(s) in step (1). For
example, beginning with an exponential growth model with
deterministic equation % = rN, a choice has to be made
about whether the parameter » represents only a birth rate
(i.e., we are modeling a pure birth process) or whether it
represents the net effect of a birth rate minus a death rate
(i.e., r = b —d). For the purpose of illustrating the SSA, we
will keep things simple and model a pure birth process only,
in which case r can be interpreted as the expected number
of births per unit time. The stochastic formulation for a pure
birth model (also known as Yule process; Yule 1925) can be
represented as follows:

N2 N+ (1)

Here, Eq. 1 means that births occur at rate r N and that
each birth has the effect of increasing the population by
1. A single iteration through the SSA using this model,
beginning at time ¢ and population size N, would proceed in
this manner: calculate the birth rate (»N), obtain a sample
(t) from an exponential distribution with mean equal to the
birth rate, update the time from ¢ to ¢ + v, and update the
population from N to N + 1.

The decision to sample from an exponential distribution
to determine the timing of the next demographic event in
the homogeneous SSA is based on assumptions about what
it means for a demographic process to be “random.” These
assumptions are: (a) the process happens at some average
rate within a given time interval, although when it happens
in the interval is completely random (i.e., the occurrence
times within an interval are uniformly distributed); (b)
occurrence times of the process are independent of each
other. Taken together, these assumptions describe what
is known as a Poisson point process, which is used to
represent random processes in continuous time across many
disciplines (Cox and Isham 1980). One useful feature of
these processes in the context of ecological models is
that the occurrence time of a set of multiple, independent
Poisson processes (e.g., a population experiencing both
birth and death) can itself be described by a single Poisson
point process with rate, A, equal to the sum of the rates of
the individual processes. For the purpose of modeling the
timing of demographic events, it is therefore sufficient to
consider only a single Poisson process with rate X, even
though A may represent a mixture of multiple demographic
processes.

When the rate, A, of a Poisson point process is
constant through time, it is called a homogeneous (or
stationary) Poisson process and has inter-event times (i.e.,
times between event occurrences) that follow a cumulative
distribution function (CDF), F'(t), of the form (Ross 2014):

F(t) =1 — exp(—At) (2

Equation 2 is also the CDF of an exponential distribution,
so it is possible to generate the inter-event times of
a homogeneous Poisson process by sampling from an
exponential distribution with rate A. However, because it is
generally faster computationally to sample from a uniform
distribution than it is from an exponential distribution, it
is common to obtain inter-event times of homogeneous
processes by generating sample U from a uniform
distribution on the interval [0, 1] and then converting it to
the appropriate exponential random variable, X, using the
inverse transform method (Devroye 1986), with equation
X =5 In(1 - 0).
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Changing environments: nonhomogeneous Poisson
processes

When the rate of a Poisson point process is not constant
over time, for example, when it depends on changing
temperatures, it is called a nonhomogeneous (or non-
stationary) Poisson process (Cox and Isham 1980). In such
cases, the rate of the process is described by a time-
dependent function, A(¢), and the CDF for inter-event time
7, following the last occurrence of the process at time 7, is
(Ross 2014):

F@t)=1—exp (—/0 AMT + ‘L’)dl') 3)

In some cases, analytical solutions to the integral in Eq. 3
are available. For example, if the model can be represented
with one nonhomogeneous Poisson process with a rate

function of the form A(r) = at™? (ie., a power law
function), Eq. 3 reduces to (Crow 1974; Finkelstein 1976):
F(t) =1—exp(-a(T +1)f - T9), )

which is also the CDF of a Weibull distribution. Thus, for
extremely simple nonhomogeneous processes, the tradi-
tional SSA can be modified to obtain t via sampling from
a Weibull distribution with scale parameter « and shape
parameter B. However, many nonhomogeneous demo-
graphic processes will not follow a power law function. For
example, if the birth rate r in the pure birth model (1) were
time- or environment-dependent, the model becomes:

NION N+ (5)

Here, unless the time-dependent rate function A(¢) = r () N
can be expressed as at P, the Weibull method discussed above
is not appropriate. Further, even if a particular demographic
process could be described by a power law function, most
population models will involve many different demographic
processes and it is unlikely that the sum of all such processes
could be expressed as a power law function.

For most population- or community-level models with
any kind of complexity, analytical solutions to the CDF
in Eq. 3 are unavailable. Various methods have been
proposed to simulate such nonhomogeneous models (e.g.,
Boguiid et al. 2014; Vestergaard and Génois 2015; Duan
and Liu 2015), most of which involve thinning or rejection
sampling (Buffon 1774; Von Neumann 1951). We will
not describe these methods here, other than to say that
while they are often computationally efficient, they require
bounded rate functions A(#) and do not perform well for
high-dimensional systems (e.g., models of many species)
(Ross 2014). In any case, our goal is not to propose
the most efficient method for simulating nonhomogeneous
biological processes, but rather to explore the conditions in
which it is important to fully account for nonhomogeneous
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demography. Thus, we employ an exact, direct approach to
simulating nonhomogeneous stochastic models.

The direct approach, which we will refer to as SSA+,
replaces step (2) of Gillespie’s SSA by generating t using
the inverse transform method, which can be implemented as
follows:

1. Generate random number U from a uniform distribution
on the interval [0, 1].

2. Find the value of X which solves F(X) = U, where F
is the CDF in Eq. 3.

3. Set inter-event time 7 to X.

Step (2) above is the major difference between homo-
geneous and nonhomogeneous SSAs, and can be accom-
plished by searching an interval (generally O to the maxi-
mum time of a simulation) for the root (zero) of the equation
F(X) — U with respect to X. In Appendix B, we provide R
code (using the base function uniroot) for this step.

Both the direct SSA+ method described here and
the rejection-based methods mentioned previously are
computationally expensive compared to a homogeneous
SSA, and thus many ecologists might be willing to sacrifice
some accuracy for a faster approach. One way to do so, which
we will call the naive SSA (SSAn), would be to convert a
nonhomogeneous process to a homogeneous one for each
inter-event period by fixing A(¢) to its value at the beginning
of the inter-event period. This algorithm would continue to
sample inter-event times from an exponential distribution
and would be naive to changes in the environment only for
the duration of an inter-event period.

Supposing A(¢#) was an increasing function (i.e., the
rates of demographic events increased through time), one
would expect the SSAn to, on average, produce inter-event
times that were smaller than those produced by the exact
SSA+ method. Since inter-event times determine when
events occur in the simulations, for an exponential growth
model, this method would predict smaller population sizes
compared to the SSA+ method. However, for other kinds
of models and/or patterns of environmental change, it is
difficult to know a priori how the SSAn and SSA+ methods
might differ. Therefore, to help generate some intuition about
when such scenarios might arise, we explore how predictions
of the SSAn and SSA+ differ for some common ecological
models and a variety of environmental change scenarios.

Stochastic population models

To assess the importance of fully accounting for nonhomoge-
neous demography, we consider two population models: expo-
nential and logistic growth. The deterministic forms of these
models and their stochastic analogs are presented in Table 1.

Each model includes a density-independent birth rate,
b(t), which we set as the nonhomogeneous demographic
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Table 1 The ecological models considered in the study, specified as deterministic equations with their stochastic analogs

Model Deterministic equations Stochastic intensity functions

Exponential growth ‘%’ =b()N —d(t)N N birth: N bON Nl
where N death: N 2ON, N —1
b(t) = by-env(t)
dt) =d;

Logistic growth dT};l =b({)N —d(t)N N birth: N M Nl
where N death: N 2% N g

b(t) = by-env(t)
d(t) =dy +d,N

Parameters b; and d; are density-independent birth and death rates. Density-dependent growth in species N is incorporated with a density-
dependent death rate, d;. For the stochastic intensity functions, the functions above the arrows have the same parameter values as their deterministic

counterparts. The environment functions, env(z), are defined in Table 2

process in all our simulations. Specifically, we assume
a fixed density-independent birth term, bj, which is
multiplied by a time-dependent environment function,
env(t), to produce a birth rate that changes through time.
The models also include a homogeneous death rate, so that
the probability of any event occurring is the sum of the birth
and death rates and corresponds to the A(7) in Eq. 3.

We created time-dependent environment functions, rep-
resenting six environmental change scenarios: (1) constant,
slow increase (increasing 1); (2) constant, fast increase
(increasing 2); (3) slow, regular fluctuations around a mean
(fluctuating 1); (4) fast, regular fluctuations around a mean
(fluctuating 2); (5) slow, irregular fluctuations around a
mean (irregular 1); (6) fast, irregular fluctuations around a
mean (irregular 2). The two increasing scenarios are analo-
gous to a birth rate that increases as temperature increases,
as might occur over a growing season or in an environment,
where temperatures are gradually increasing over time. The
two fluctuating scenarios are analogous to a birth rate that
responds to fluctuating temperatures, as might occur in an

Fig.1 Values of the (a)
time-dependent environment 25 - ) )
functions used in the - :ggi:z::g ;
simulations of nonhomogeneous
demography. In all cases, the
value on the y-axis corresponds - 207
to the numerical solution of ®
env(t) at time ¢ (x-axis). ‘qc:
Equations for these functions E 15-
are in Table 2 E . _ -
g R
| AR
1.0 4=
0.5 -

environment with strong diurnal or seasonal temperature
changes. Finally, the two irregular scenarios are analogous
to a birth rate that responds to irregularly varying temper-
ature fluctuations. Figure 1 shows the environment as a
function of time for the functions we used (Table 2).

For implementing the SSAn method, we treated demog-
raphy as homogeneous, but allowed rates to be updated after
each step through the algorithm. In particular, we calculated
the inter-event time of the next event, t, by sampling from
an exponential distribution with rate A = A(¢), where ¢ is
the current time of the simulation. As mentioned previously,
this implementation is naive to changes in the environment
for the duration of an inter-event period. In general, if the
frequency of inter-event periods in a system far exceeds
the rate of environmental change, we would expect SSAn
results to closely approximate SSA+ results.

For each model and environment function, we ran 10,000
simulations of both the SSAn and SSA+ methods with a
starting population size of N = 100, using the following

parameter values: by = 0.003 and d; = 0.0027; and
(b) (c)
2.0 7 — . fluctuating 1 47 — . irregular 1
. fluctuating 2 . irregular 2
1.5 - 3
-~ -~
.'- \ M _' \ . L _'.-.
o4y Vi a 2 v Y
10V 1 P A T
T A b ‘ay
a . . . L
0.5 - LR \ 14 A
NE
A R
0.0_ \’-: 0_
I T T T T 1 I T T T T 1
o 2 4 6 8 10 o 2 4 6 8 10
Time (t) Time (t)
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Table 2 The environment functions or distributions considered in our
simulations

Description Environment function, env(z)
Increasing 1 0.04r + 1
Increasing 2 0.08f +1
; in()+1
Fluctuating 1 5‘“175
Fluctuating 2 %

Irregular 1 env(t) = spline({1, 2, ..., 100}, {Y1, Y2, ..., Y100})
where ¥; ~ N'(n = 1.5, 02 = 0.25)
Trregular 2 env(t) = spline({1, 2, ..., 100}, {¥1, Y2, ..., Y100})

where Y; ~ N(u = 1.5, 6% = 0.50)

To create time-dependent equations for the irregular simulations, we
first sampled from a normal distribution (n = 100; one for each
time step) then used spline interpolation on the samples to create a
continuous-time function over which to integrate. Values outside the
simulation interval were set as the mean of the distribution (1.5)

for the logistic growth model, d = 0.000003 (with this
parameterization, carrying capacity K = %). The
above values were chosen such that individual demographic
processes occurred somewhat slowly in comparison to the rate
of environmental change (e.g., in the increasing 1 scenario,
the environment changes by 0.04 per unit time, while the
density-independent birth rate was 0.003 per individual over
the same period). We ran both models to # = 100.

Comparing CDFs of inter-event times

Prior to examining the results of the simulations, we
can derive some intuition about which models and
environment functions may lead to important differences
in the predictions of the SSAn and SSA+. One way to
do so is to examine the CDFs of the waiting times for
any event, 7, at + = 0 based on both homogeneous and
nonhomogeneous treatments. Figure 2 shows these CDFs
for each model and environment function. We can see from
Fig. 2a, for example, that the CDFs of the SSA+ method are
consistently higher than those of the SSAn. This suggests
that demographic events will occur earlier in the SSA+
simulations, translating to higher population sizes over
time. For fluctuating environment functions, as in Fig. 2b,
differences between the CDFs of the SSAn and SSA+ are
even more pronounced, as we might expect simply from
looking at how quickly the environment changes in Fig. 1b
compared to Fig. la. In Fig. 2c, the SSA+ CDFs appear
to be somewhat lower than those of the SSAn, which we
would expect to lead to lower projected population sizes for
these early time points. Differences between the inter-event
times appear smaller for the logistic growth model (Fig. 2d—
f); thus, we expect to see smaller differences between SSAn
and SSA+ results.

@ Springer

Diagnostics and analysis

We performed three independent diagnostic tests of our sim-
ulation algorithms. First, we tested our implementation of
sampling inter-event times for nonhomogeneous processes.
To do so, we simulated a nonhomogeneous process with a
rate function of the form A(f) = at~#, a power law func-
tion. As discussed above, when a nonhomogeneous process
has such a rate function, it is possible to obtain inter-
event times by sampling from a Weibull distribution with
parameters « and B. We found nearly identical distribu-
tions of waiting times between ours and the Weibull method
(Appendix A).

Second, we compared the results of SSAn and SSA+
simulations when the environment function was constant
through time. As discussed above, the SSAn method treats
demography as being homogeneous by obtaining waiting
times from an exponential distribution, whereas the SSA+
method treats demography as nonhomogeneous by using the
inverse transform method on the appropriate CDF to obtain
waiting times. When the environment is constant, both
methods should produce the same distribution of waiting
times and, subsequently, the same distribution of population
sizes over time. As expected, for both exponential growth
and logistic growth with a constant environment function,
both the SSAn and SSA+ algorithms produced nearly
identical population size distributions (Appendix A).

To analyze the final simulation results (presented
below), for each model and environment function, we
compared the 95% confidence intervals for the mean
across 10,000 replicate simulations of the SSAn and SSA+
methods at each interval time step, obtained using non-
parametric bootstraps (percentile method; Davidson and
Hinkley 1997). Prior to this, we tested whether 10,000
simulations were enough to accurately characterize the
probability density of the stochastic processes. Specifically,
we examined how the variation in population projections
changed as more simulations were added. For all models
and environment functions, there were minimal changes
in the mean and standard deviation across simulations
for resulting population sizes beyond 1000 simulations
(Appendix A). Thus, running 10,000 simulations was more
than sufficient to minimize Monte Carlo errors in the
estimated means, and confidence intervals were very small.

Since the exponential growth model is linear with
respect to population size, the only differences that should
arise between the expected (mean) values of deterministic
and stochastic versions of the model will be due to
lattice effects (Henson et al. 2001), the impacts of which
should be minimal at population sizes larger than 100
(as in our case). Thus, in addition to examining the
confidence intervals, it is possible to directly compare the
results of the SSAn and SSA+ simulations to numerical
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Probability event has occurred

0.2 7 — SSAn 021 — SSAn 029 [ __ ssan
— - SSA+(inc. 1) — = SSA+ (fluc. 1) — = SSA+ (irreg. 1)
. SSA+ (inc. 2) . SSA+ (fluc. 2) . SSA+ (irreg. 2)
0.0 - 0.0 - 0.0 -
—r T T 1T 1 —r T T 1T 1 —r 1 1 1T 1
01 2 3 4 5 01 2 3 4 5 01 2 3 4 5

0.2 4

0.2 4

Probability event has occurred

0.2 4

—— SSAn — SSAn —— SSAn
- = SSA+(inc. 1) - = SSA+ (fluc. 1) — = SSA+ (irreg. 1)
. SSA+ (inc. 2) . SSA+ (fluc. 2) . SSA+ (irreg. 2)
0.0 - 0.0 - 0.0 -
—r T 1T T 1 —r T 1T 1T 1 | I I N R B |
01 2 3 4 5 01 2 3 4 5 01 2 3 4 5
Time Time Time

Fig. 2 Cumulative probabilities over time (from ¢ = 0) that the next
demographic event of any kind will occur, for all models and envi-
ronment functions. The top row highlights the probabilities for the
exponential growth model for the a increasing; b fluctuating; and
¢ irregularly changing environment functions, while the bottom row
shows the probabilities for the logistic growth model (d—f). The solid

solutions of the deterministic equation for exponential
growth in Table 1. In the absence of Monte Carlo error
or lattice effects, if the SSA+4 is properly accounting
for nonhomogeneous demography, the mean value of the
simulations at particular times should be equal to the
solutions of the deterministic equations at those times. Since
the logistic growth model is non-linear with respect to
population size, both lattice effects and non-linear averaging
will lead to differences between the expected values of
deterministic and stochastic versions of the model. As such,
we compare SSAn and SSA+- results to the deterministic
results only for the exponential growth model. For all the
simulations and analyses above, we used R, version 3.4.0
(R Core Team 2017), and for solving the deterministic
equations, the R package “deSolve” (Soetaert et al. 2010).
R code for SSAn and SSA+ simulations is provided
in Appendix B.

line represents the probabilities for the SSAn method, which assumes
that demographic processes occur at constant rates over time (in this
case, the rate at t = 0). Dashed and dotted lines represent the prob-
abilities obtained from the SSA+ method, which accurately accounts
for nonhomogeneous demographic rates (compare to Fig. 1). At N(0),
curves are similar for both models

Results

When the environment was changing, there were often
differences in the predicted distributions of population
sizes between the SSAn and SSA+ methods (Fig. 3;
the [similar] results for the slower environment functions
are in Appendix C). Generally, the magnitude of these
differences corresponded with what could be predicted
based on the CDFs in Fig. 2. For example, the distributions
of population size predicted by the SSAn and SSA+
algorithms for exponential growth overlapped the least
when the environment changed rapidly (Fig. 3b, c), the
scenarios that had the largest differences in the CDFs
between SSAn and SSA-+ (Fig. 2b, c¢). Similarly, the
predictions of SSAn and SSA+ logistic growth were
fairly similar (i.e., distributions and expected values were
similar) when there was an increasing environment function
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(Fig. 3d), a function for which there were minimal
differences between SSA and SSA+ inter-event times
according to Fig. 2d.

Differences between exactly accounting for (SSA+) or
not fully accounting for (SSAn) environmental change can
also be seen in Fig. 4, which shows the 95% confidence
intervals of the expected values over time for the SSAn
and SSA+ methods (exponential growth). Furthermore,
as expected from theory, the expected values from the
SSA+ method closely match that of the deterministic
version of the exponential growth model with a changing
environment.

Differences in the expected values, N, of the SSAn
and SSA+ simulations were qualitatively consistent with
the CDFs, in that their direction (higher or lower) could
be predicted from Fig. 2. For example, for exponential
growth the SSA+ CDF curves for increasing and fluctuating
environment functions were generally above those of
the SSAn curves, suggesting births (the only possible
demographic events) would happen more frequently in
the SSA+ simulations. Consistent with this, the mean
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population size N of the SSA+ simulations for increasing
and fluctuating conditions were higher at t = 100 than their
SSAn equivalents. The CDFs for the irregularly changing
environments (Fig. 2c, f) were a notable exception to this:
The initial SSA+ CDF curves were below their equivalent
SSAn curves at ¢+ = 0, but at t = 100, N for SSA+ was
higher than that of SSAn. This can be attributed to the fact
that the irregular environment function gradually declined at
early time points (shown in Fig. 2) but ultimately increased
at later time points (not shown).

Discussion

Recent uses of SSAs in ecology explore cases where demo-
graphic traits (e.g., birth rate, feeding rate, death rate) are
constant through time (Kolpas and Nisbet 2010; Kramer
and Drake 2010, 2014; Simonis 2012; Yaari et al. 2012;
Gokhale et al. 2013; Huang et al. 2015; Nisbet et al. 2016;
Palamara et al. 2016), even though by now it is well-
known that such traits can and do respond to changing
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Fig.4 The 95% confidence intervals over time for the expected (mean)
population size (N) of the SSAn (red) and SSA+ (blue) simulations
of the exponential growth model. Displayed are the expected values
(y-axis) for increasing 2 (a), fluctuating 2 (b), and irregular 2 (c)
environment functions. Also displayed are the numerical solutions
to the ordinary differential equation describing the deterministic
versions of exponential growth with the same changing environment
functions. In general, confidence intervals were tiny and may be hard
to distinguish

environments. Here we described one method of extend-
ing the standard SSA algorithm to account for the added
effects of nonhomogeneous demography (i.e., demogra-
phy that changes through time) and examined a variety
of scenarios and ecological models in which account-
ing for nonhomogeneous demography can be important.
For exponential growth and logistic growth models, we
found often large differences in the predicted distributions
of population sizes between partly homogeneous (SSAn)
versus nonhomogeneous (SSA-+) implementations of the
algorithm in changing environments. When demography
changed rapidly—as in the case of demography respond-
ing to significant environmental variability—SSAn and
SSA+ simulations differed markedly in their expected

values and distributions (Figs. 3, 4). Moreover, these dif-
ferences could generally be predicted a priori based on
comparing the CDFs (Fig. 2) associated with the simulation
methods.

We do not intend for this paper to be a criticism of
homogeneous SSAs as there are numerous circumstances
in which it is appropriate to treat demographic parameters
as constant through time. Rather, because of the moderate
computational cost of fully nonhomogeneous SSAs, one of
our goals is to highlight the circumstances in which partly
homogeneous SSAs and fully nonhomogeneous SSAs
would differ substantially. Based on our findings, which
compare a naive SSA that updates demographic rates only
after each event (SSAn) to an SSA that fully accounts for
continuously changing demographic rates (SSA+), these
circumstances are (1) strong coupling between demographic
traits and the environment (in our simulations, this coupling
was always 1 to 1, with no lag); and (2) large environmental
variability.

Research on thermal ecology and thermal performance
over several decades suggests strong coupling between
demography and environmental conditions, particularly
for ectotherms and temperature (e.g., Davidson and
Andrewartha 1948; Huey and Stevenson 1979; Huey and
Kingsolver 1989; Adolph and Porter 1993; Deutsch et al.
2008; Angilletta 2009; Dell et al. 2011; Estay et al.
2011; Meisner et al. 2014). It is therefore already well-
established that condition (1) is often satisfied in the natural
world, particularly with respect to temperature. Regarding
condition (2), environmental variability is also common in
many systems and is likely to increase in the future. For
example, inter-annual temperature variability has increased
markedly in some regions in the past 50 years (Donat
and Alexander 2012; Huntingford et al. 2013; Hartmann
et al. 2013) and will probably continue to increase in the
future (Collins et al. 2013). Similarly, rainfall is also highly
variable over time (e.g., Loik et al. 2004) and can strongly
influence demography, particularly in arid or semi-arid
areas (Knapp and Smith 2001; Huxman et al. 2004). Thus,
many natural systems satisfy the two conditions which favor
the use of nonhomogeneous SSAs.

Understanding the interaction of environmental stochas-
ticity and nonhomogeneous demography could be partic-
ularly important. In our work, the irregularly changing
environment functions (irregular 1 and 2) followed specific
(randomly generated) trajectories that did not differ between
simulations. This approach effectively compared SSAn and
SSA+ models for a single realization of a random envi-
ronment, but did not compare them for randomly changing
environments more generally. To fully assess how SSAn and
SSA+ models might differ for randomly changing environ-
ments, one could employ stochastic differential equations
for the environment functions, for example, modeling them
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as Ornstein-Uhlenbeck processes (Uhlenbeck and Orn-
stein 1930). Alternatively, one could run many SSA+
simulations for a set of realized stochastic environments,
or generate different realizations of a random environment
for each simulation. More broadly, if demographic traits
respond to a randomly changing environment, the sum of all
demographic rates (i.e., the rate that any demographic event
occurs) may be treated as a doubly stochastic Poisson pro-
cess, or Cox process (Cox 1955). While stationary Cox pro-
cesses are relatively well-studied (e.g., Grandell 1976; Cox
and Isham 1980), considerably less attention has been given
to non-stationary Cox processes, especially in ecology.

As mentioned previously, various authors have suggested
alternatives to the exact approach we used to sample
inter-event times of nonhomogeneous Poisson processes,
most of which use a variation of thinning or rejection
sampling (Bogufid et al. 2014; Vestergaard and Génois
2015; Ross 2014; Duan and Liu 2015). However, we
were not concerned with finding the most computationally
efficient method for simulating nonhomogeneous SSAs.
Indeed, our simulations would have been many times
faster if they had been written in a lower-level language,
such as C or FORTRAN rather than R. Rather, since
both our exact approach (SSA+) and current rejection-
based methods are costly computationally (though not
that costly: all our SSA+4 simulations took less than a
day to run on a single 12-core server), we were more
interested in knowing when it was worth considering
any nonhomogeneous simulation approaches. In doing
so for some simple ecological models and environment
functions, we also found a fairly general, computationally
inexpensive approach—involving the comparison of easily
calculated homogeneous and nonhomogeneous CDFs—
for predicting when large differences between SSAn and
SSA+ might arise. We suggest comparing such CDFs prior
to deciding whether to implement any of the resource-
intensive nonhomogeneous methods.

Some caution is necessary when deciding between
homogeneous and nonhomogeneous approaches based on
CDFs for particular time intervals. We examined initial
CDFs (i.e., those beginning at ¢t = 0) to gain some intuition
about overlap between the SSAn and SSA+ methods,
and while that intuition was correct for most models
and environments considered, it failed for the irregular
environment. This was because the irregular environment
trended down at + = O but trended upwards near the
end of the simulations. In Appendix D, we highlight the
sensitivity of different starting points for the CDFs, showing
that they largely match what one would expect from
inspecting the trajectories of the environment functions at
those different times (e.g., SSA+ CDFs are generally below
SSAn CDFs during periods where the environment function
is decreasing, and vice versa). However, it is straightforward
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to conceive of other cases, involving both highly variable
environment functions or models with complicated state
space, where examining one or a small number of CDFs would
provide incomplete information about differences between
SSAn and SSA+ methods; for instance, chaotic systems,
systems that cycle (e.g., predator-prey models), and
community-level models where individual species can go
extinct. One way around this issue would be to compare CDFs
across a broad range of time intervals and initial conditions.

We compared the predictions of homogeneous and non-
homogeneous implementations of Gillespie’s stochastic
simulation algorithm (SSA) when demography was non-
homogeneous, for two simple ecological models and six
different environmental change scenarios. For our simula-
tions, we allowed only a single model parameter (b;) to
be affected by a changing environment. We nevertheless
found an important effect of nonhomogeneous demogra-
phy for these simple, low-dimensional models. In real sys-
tems, multiple demographic traits have the potential to respond
to the environment in different ways and such systems are
also typically high-dimensional (i.e., contain many popu-
lations), non-linear, and have complicated dynamics. Our
study should therefore be considered a fairly conservative
test of the importance of fully accounting for nonhomoge-
neous demography in stochastic population models.
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Appendix A: Diagnostic tests of SSA+
method

To ensure we were generating appropriate inter-event times,
7, using our implementation of the SSA+4 method, we
performed two diagnostic tests:

1. We simulated a non-stationary exponential growth
model using our SSA+ implementation with a rate
function of F(r) = at# (a power law function) and
compared our results to taking samples from a Weibull
distribution with parameters o and S8, as discussed in
the main text. These results should align nearly exactly
if our implementation is correct, which appears to be
the case (Fig. 5).
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methods. Also displayed are the
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2. We set the environment function to a constant value
(i.e., demography was stationary) and compared the
results of 50,000 simulations of the SSA+ method to an
independent SSA implementation (since demography
is stationary in this case, we refer to it simply as the
SSA rather than the SSAn, though both use the same
methods). With a constant environment, the SSA+
method should match the SSA method, which appears
to be the case (Fig. 6).

Finally, we also examined the extent to which 10,000
simulations was sufficient to capture the ensemble mean
and variance of the stochastic simulations. To do so, we
examined how the means and variances of the exponential
growth models were affected by the number of simulations
used. We found only very small differences in the means and
variances from 1000 to 10,000 simulations used (see Fig. 7
for this comparison).

Appendix B: R code for SSA+ method

This section contains sample code for simulating 1 run
of the Gillespie algorithm (SSA or SSAn in the main

SSAn
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= Qverlap
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> ## Function gillespie: SSA function (grid version)
## Performs one run of the homogenous SSA, outputting population sizes at different times.
4+ ## We refer to this as a ‘grid * version because it does not record all events, rather it
s ## records the state of the system across a vector of monotonically increasing time points.
o ## The vector must begin with 0, but can otherwise be any size and need not be regular.
7 ## The grid of times does not affect the accuracy of the simulation and can be easier to
¢ ## work with than a function that records all events.
o #H#
0 ## Function ‘gillespie ° requires the following arguments:
11 ## ‘init ‘=Array containing initial conditions (e.g. initial population size)
o ## ‘times ‘=Vector of times over which to record the system state
13 ## ‘param ‘=Array containing all parameters and functions required for calculating intensities
4+ ## ‘inten ‘=Function which returns intensities of point process(es) given ‘param °
s ## ‘pproc ‘=Array containing state changes caused by point process(es) [same order as ‘inten ‘]]
1o ## ‘hpp ‘=Function for sampling inter—event times

G

7 ##
s gillespie <— function(init, times, param, inten, pproc, hpp){
19 if (length (times) == 0){
20 stop(”No time points provided in ‘times ‘”)
21 } else if(times[1] != 0){
2 stop(” First time point is not 07)
23 } else {
24 tottime <— times|[1]
25 tinc <— length(times)
26 N <— init
27 results <— matrix (nrow = tinc, ncol = length(init))
28 results[l, ] <= N
29 for(i in 2:tinc){
30 results[i, ] <— results[i — 1, ]
31 while (tottime <= times[i]) {
32 intentemp <— inten (tottime , N, param)
if (all (intentemp == 0)){
34 results[i:tinc, | <— N
35 i <— tinc
36 warning (” Exiting with all intensities equal to 07)
37 break
38 } else if (min(intentemp) < 0) {
39 results[i:tinc, ] <— NA
40 i <— tinc
41 warning (” Exiting with intensity less than 07)
2 break
43 } else {
4 tau <— hpp(intentemp)
45 tottime <— tottime + tau
46 which . pproc <— sample (1:nrow(pproc),
17 size = 1,
48 prob = intentemp )
49 if (tottime > times[i]){
50 results[i, ] <= N
51 N <— N + pproc|[which.pproc, ]
52 break
s3 } else {
54 N <— N + pproc[which.pproc, ]
)
56 }
)
58 if (i == tinc) break
59
60 cbind (times , results)
61 }
P

o+ ## Function hpp: inter—event time sampling function (homogenous Poisson process)
os ## Argument ‘intentemp ° is the output of the intensity function at a given time
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66

68

69

114
115
116
117
118
119
120
121
122
124
125
126
127
128

129

##

hpp <— function (intentemp) {

—(1 / (sum(intentemp))) * log(l — runif(l))
}

##
##

Function nhpp: inter—event time
Generates inter—event times for a continuous nonhomogenous process

##
##
##
##
##
##

Function ‘nhpp‘ requires the following arguments
‘tottime ‘=Current time of simulation
‘N‘=Current system state
‘param ‘=Array containing parameters and functions
‘inten ‘=Function which returns intensities
## ‘timeleft ‘=Time left in the simulation
## Subdivisions and tolerances (in integrate) may be altered to
nhpp <— function (tottime , N, param, inten, timeleft){
tryCatch (uniroot (function (X, Y) {
1 — exp(—integrate (Vectorize (function (X) {

sum(inten (tottime + X, N, param))}), 0, X,
lower = 0, upper = timeleft, tol =
function(c) timeleft + 1)

(provided by

3

subdivisions =

error =
}
##
#it
#i#
##
#it
gillespie_plus <— function (init ,
if (length (times) 0){
stop (”No time points
} else if(times[1] != 0){
stop(” First time point
} else{
tottime <— times[1]
tinc <— length (times)
N <— init
results <— matrix (nrow =
results[1, ] <= N
for(i in 2:tinc)({
results[i, ] <— results[i — 1, ]
while (tottime <= times[i]) {
intentemp <— inten (tottime , N, param)
if (all (intentemp 0)){
results[i:tinc, ] <— N
i <— tinc
warning (" Exiting with all
break
} else if (min(intentemp) < 0) {
results[i:tinc, ] <— NA
i <— tinc
warning (" Exiting with
break
} else {
tau <— nhpp(tottime , N, param,
tottime <— tottime + tau
intentemp <— inten (tottime , N, param) # recalculate
which . pproc <— sample (1:nrow(pproc),
size = 1,
prob = intentemp)
if (tottime > times[i]){
results[i, ] <= N
N <— N + pproc[which.pproc, |
break
} else {

Function gillespie_plus: SSA+ function (grid version)
Performs a run of the nonhomogenous SSA, outputting population
The only major difference between this and ‘gillespie ° is

times , param, inten , nhpp) {

pproc ,

provided in ‘times ‘)

is not 07)

tinc, ncol = length(init))

intensities equal to 07)

intensity less than 07)

inten ,

‘gillespie_plus °

required for calculating
of point process(es) given

increase

sizes at
the use of

sampling function (nonhomogenous Poisson process)
using

inverse transform

below ) :

intensities

‘param °

speed or precision.

200)$value) — Y},
le—5, Y = runif(1))$root,

times .
‘hpp .

different
‘nhpp ° over

(times[tinc] — tottime))

for new tottime
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30 N <— N + pproc[which.pproc, ]

}
}

34 if (i == tinc) break
36 cbind (times , results)

5 )

3 3

w0 ####### Example application of ‘gillespie [exponential growth]
41 ## Initial population size

2 init <— 100

12 ## Times

44 times <— seq (0, 10, 1)

145 ## Terms for ‘param‘ list

16 ### Environment function (constant)

147 constant <— function(t) 1

s ### Demographic functions

49 exponentialfun <— list(

and ‘gillespie_plus

150 births = function(b, envres) b *x envres,
151 deaths = function(d, envres) d
)
### Combine parameters and demographic functions into list
s+ param <— list(b = .03, d = .027, exponentialfun, env = constant)

param <— unlist(param) # collapse to one—dimensional list

so ## Intensity functions which use the demographic functions (above)
57 inten <— function(t, X, param) {

58 with(as. list (c(param)) ,{

59 bint <— X % births(b, env(t))

160 dint <— X % deaths(d, env(t))

161 c(bint, dint)})

162}
163 ## State changes caused by the point processes (birth = N + 1, death = N — 1)
164 pproc <— matrix(c(l,—1), nrow = 2)

s ## Run 1 simulation of gillespie and gillespie_plus

66 set.seed(20170915)

17 gillespie (init , times, param, inten, pproc, hpp)

s set.seed(20170915)

i gillespie_plus (init, times, param, inten, pproc, nhpp)

text) and 1 run of the extended, nonhomogeneous (ie., Appendix C: Comparison of SSAn and SSA+
non-stationary) version of the algorithm (SSA+) for  for slower environment functions

an exponential growth model. The code is specifically

designed to allow for environment- or time-dependent  In Fig. 8, we compare SSAn and SSA+ predictions for the
demography, but in this example the environment is  slower environment functions, specifically “increasing 17,
constant. Additional code and more detailed examples are ~ “fluctuating 17, and “irregular 1”°. The qualitative results are
available at https://github.com/legault/SSAplus.
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Fig.8 The frequency distribution of population sizes at¢ = 100 for the
exponential growth (a—c) and logistic growth (d—f) models, simulated
using either the SSAn (red) or SSA+ (blue) method. Displayed are the
population size distributions for environment functions: increasing 1
(a, d), fluctuating 1 (b, e), and irregular 1 (c, f). Colors are transparent,

similar to those in Fig. 3 (in main text), albeit with more
overlap between the distributions.

Appendix D: CDFs beginning at different
time points

In Fig. 9, we compare the CDFs for the exponential growth
model assuming the simulations began at + = 3 (Fig. 9a—

Population size (N)

Population size (N)

so purple indicates overlap between the SSAn and SSA+ methods.
Also displayed are the expected values, N (rounded to nearest inte-
ger), for each simulation method (same coloration as above). Note the
different scales on both axes for each panel

c) or t = 5 (Fig. 9d-f), with respect to the environment
functions. For the fluctuating and irregular environments,
these CDFs differ from those displayed in Fig. 2 of the
main text. For example, at ¢ 3 environment function
“fluctuating 1” is decreasing rapidly thereby lowering the
birth rate and consequently the CDF in Fig. 9b. In contrast,
the function “fluctuating 2” is increasing rapidly at t = 3
and the resulting CDF is elevated compared to the SSAn
CDFE.
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Fig.9 Cumulative probabilities
over time (starting at ¢ = 3 for
(a—c); at t = 5 for (d—f)) that the
next demographic event will
occur for the exponential growth
model under increasing (a, d),
fluctuating (b, e), and irregular
(¢, ) environments. The solid
lines represent the probabilities
for the SSAn method, which
assumes that demographic
processes occur at constant rates

Probability event has occurred

over time (in this case, the rate 0.2
att = 3 ort = 5). Dashed and —_— ggﬁz (inc. 1)
dotted lines represent the .. SSA+(inc. 2)
probabilities obtained from the 0.0 -

SSA+ method, which
accurately accounts for
nonhomogeneous demographic
rates (compare to Fig. 1). As in (d)
Fig. 2, the CDFs assume an
“initial” (i.e., beginning at t = 3
or t = 5) population size of 100
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