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Theory has shown that the effects of demographic stochasticity on communities 
may depend on the magnitude of fitness differences between species. In particular, it 
has been suggested that demographic stochasticity has the potential to significantly 
alter competitive outcomes when fitness differences are small (nearly neutral), but 
that it has negligible effects when fitness differences are large (highly non-neutral). 
Here we test such theory experimentally and extend it to examine how demographic 
stochasticity affects exclusion frequency and mean densities of consumers in simple, 
but non-neutral, consumer–resource communities. We used experimental microcosms 
of protists and rotifers feeding on a bacterial resource to test how varying absolute 
population sizes (a driver of demographic stochasticity) affected the probability of 
competitive exclusion of the weakest competitor. To explore whether demographic 
stochasticity could explain our experimental results, and to generalize beyond our 
experiment, we paired the experiment with a continuous-time stochastic model of 
resource competition, which we simulated for 11 different fitness inequalities between 
competiting consumers. Consistent with theory, in both our experiments and our 
simulations we found that demographic stochasticity altered competitive outcomes 
in communities where fitness differences were small. However, we also found that 
demographic stochasticity alone could affect communities in other ways, even 
when fitness differences between competitors were large. Specifically, demographic 
stochasticity altered mean densities of both weak and strong competitors in 
experimental and simulated communities. These findings highlight how demographic 
stochasticity can change both competitive outcomes in non-neutral communities and 
the processes underlying overall community dynamics.
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Introduction

Studies of interspecific competition in communities often treat competition as a 
deterministic process, meaning that the same conditions (e.g. genes, traits, environ-
ment, etc.) are expected to produce the same competitive outcomes (e.g. coexistence, 
exclusion). For example, it is common to describe communities using deterministic 
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equations representing population sizes or densities (e.g. 
Lotka–Volterra equations, Lotka 1925, Volterra 1926) and 
use their solutions to predict whether species will coexist 
in different environments (Tilman 1982, Chesson 2000). 
However, an important limitation of these approaches is that 
they are generally unable to account for the variable competi-
tive outcomes frequently observed in real communities (Park 
1954, Dickerson and Robinson 1985, Fox and Smith 1997, 
Fukami 2004).

One reason deterministic approaches can fail is that 
communities are affected by demographic stochasticity, the 
randomness in population demographic rates (e.g. birth, 
death) arising from the (effectively) probabilistic nature of 
biological processes (May 1973, Renshaw 1991, Melbourne 
2012). The importance of demographic stochasticity for 
populations is well-established, with a large body of theo-
retical and experimental work showing that it significantly 
increases extinction risk for small populations (Bartlett 
1960, Kurtz 1970, Shaffer 1981, Lande 1993, Burkey 1997, 
Belovsky  et  al. 1999, Matis and Kiffe 2000, Griffen and 
Drake 2008, Ovaskainen and Meerson 2010). However, 
generalizing beyond these effects on extinction risk has been 
difficult, insofar as the impacts of demographic stochas-
ticity appear to be context-specific, depending on factors 
such as population structure (Engen et al. 2005), vital rates 
(Vindenes et al. 2008), and non-linearities of demographic 
processes (Bolnick et al. 2011). Further, even though demo-
graphic stochasticity tends to be most important in small 
populations, large populations may also be strongly affected 
by demographic stochasticity if total abundance is divided 
across many different life stages or if particular life stages 
play major roles in demography (Melbourne and Hastings 
2008). For communities composed of multiple species 
subject to these effects, it is even less clear how and under 
what circumstances demographic stochasticity can influence 
species abundances.

Most recent studies of the impacts of demographic sto-
chasticity at the community level have considered its influ-
ence only with respect to neutral theory (Bell 2000, Hubbell 
2001). If a community is neutral such that species fitnesses 
are identical, demographic stochasticity is expected to be 
the primary driver of compositional variation. Thus, neu-
tral models incorporating demographic stochasticity and no 
fitness differences between species are frequently applied to 
empirical datasets to determine whether they can reproduce 
observed community patterns (Volkov  et  al. 2003, Chave 
2004, Tilman 2004, Adler  et  al. 2007, Chase and Myers 
2011, Rosindell et al. 2012, Vellend et al. 2014, Wang et al. 
2016). However, while the importance of demographic sto-
chasticity in neutral communities is well recognized, there is 
little appreciation for the idea that it can have effects on com-
munities that are not neutral.

The small number of theoretical and simulation stud-
ies on the role of demographic stochasticity in non-neutral 
communities have largely focused on how it affects coexis-
tence, showing a range of impacts, including both higher 

and lower probabilities of coexistence (Orrock and Fletcher 
2005, Orrock and Watling 2010, Kramer and Drake 2014, 
Capitán et al. 2015, Okuyama 2015, Pedruski et al. 2015). 
Several theoretical analyses suggest that the importance of 
stochasticity for coexistence appears to depend on the mag-
nitude of fitness differences between co-occurring species 
(Orrock and Fletcher 2005, Orrock and Watling 2010, 
Pedruski  et  al. 2015). However, this has not been tested 
empirically. Indeed, much of the empirical work related 
to demographic stochasticity in non-neutral communities 
has tended to proceed independent of theory, focusing on 
its effects on long-term community-level patterns such as 
species diversity (Spencer and Warren 1996, Fukami 2004, 
Wang et al. 2016), or on factors only associated with coex-
istence such as mean growth rate (Siepielski  et  al. 2010, 
Gilbert and Levine 2017). Of the few studies that do con-
sider finer-scale outcomes such as abundances over time, 
most examine the effects of demographic stochasticity along-
side other factors such as dispersal (Alexander et al. 2012), 
priority effects (Mertz et al. 1976, Fukami 2004) or density 
manipulations (Svensson et al. 2018). These approaches are 
incomplete because even with fine experimental control, the 
effects of demographic stochasticity are difficult to isolate 
from other drivers of variability without ample time-series 
data (Vellend et al. 2014, Engen et al. 2017), and the appli-
cation of detailed stochastic population models (Melbourne 
and Hastings 2008).

Here we focus on testing the effects of demographic 
stochasticity in simple non-neutral, two-species communi-
ties, using both replicated experimental microcosms and 
stochastic simulations of communities in continuous-time. 
We examine how stochasticity affects non-neutral community 
dynamics, in particular testing how it affects the probability 
of competitive exclusion and mean densities over time. Our 
approach considers two sets of analyses:

1)	 Experimental microcosms. We created three types of 
two-species communities, consisting of protist and roti-
fer competitors with a range of competitive abilities 
between them (i.e. from small to large differences in 
relative fitness). We manipulated the strength of demo-
graphic stochasticity in these communities by vary-
ing absolute abundances over two orders of magnitude 
(500–40 000 individuals). We then observed how our 
manipulations affected competitive outcomes and spe-
cies densities over time.

2)	 Stochastic simulations. We used Gillespie’s stochastic 
simulation algorithm (SSA) to simulate a consumer–
resource model for a range of absolute abundances and 
differences in competitive abilities, similar to those in our 
experiment. We then observed how absolute abundance 
affected competitive dynamics. Any changes to com-
petitive outcomes or mean densities in these simulations 
would reflect real, practical effects that demographic sto-
chasticity alone could have on non-neutral communities 
such as ours.
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Material and methods

Part 1. Experimental microcosms

We used laboratory microcosms to examine the impact of 
absolute abundance (a proxy for demographic stochasticity) 
on competitive outcomes and dynamics. Experimental units 
consisted of different sized jars containing liquid medium, 
bacteria and one or two protist/rotifer species. The three spe-
cies used were the ciliate protists Paramecium aurelia and 
Paramecium caudatum, and the bdelloid rotifer Philodina 
americanum. All three species are fast-growing bacterivores 
and came from large laboratory stock cultures (>1.5 years 
old) raised under constant conditions. We knew from 1.5 
years of maintaining stock cultures of the three species that 
the competitive hierarchy in our system was as follows: 
Philodina americanum >> P. caudatum > P. aurelia. This com-
petitive hierarchy is also described in Cadotte et al. (2006), 
where for similar conditions P. americanum was the superior 
competitor and P. aurelia and P. caudatum had overlapping 
competitive ranks.

Microcosm medium was spring water collected from Big 
Hill Springs Provincial Park, Alberta (Canada), mixed with 
1.0 g l–1 of crushed protozoan pellets. Prior to the start of 
the experiment, the medium was autoclaved and allowed to 
cool for 1.5 h before being vacuum-filtered through auto-
claved Whatman GF/A filters (two–three for each one of 
fluid) to remove large particles. Each litre of filtrate was 
then inoculated with a long-running (>1.5 years) lab strain 
of unidentified bacteria originally isolated from a stock cul-
ture of Colpidium striatum. All filtrations and inoculations 
were done under sterile conditions in a laminar flow hood, 
but it is likely that small amounts of unknown bacteria were 
also introduced into the medium at this time. The inoc-
ulated medium was then loosely capped and stored in an 
incubator with constant light and a constant temperature of 
22°C (stirred every 10–12 h) until day 0 of the experiment 
(66 h total).

Three microcosm sizes were used to manipulate the 
maximum population size of the protist communities: 1 ml 
(small), 10 ml (medium) and 80 ml (large). Air srface-to-
volume ratios were constant between small and large jars, 
but were slightly lower in medium-sized jars. Except during 
sampling, all jars were kept with loose caps in incubators 
with constant temperature (22°C) and 24 h of light for the 
duration of the experiment.

On day 0 of the experiment (12 August 2013), autoclaved 
jars were filled in a laminar flow hood with the inocu-
lated medium and seeded with all possible two-species 
combinations of the three microzooplankton species:  
P. aurelia and P. caudatum (aurelia–caudautum), P. aurelia 
and P. americanum (aurelia–philodina) and P. americanum 
and P. caudatum (philodina–caudatum).

In the small jars, five individuals of each relevant species 
were added directly to the jars to create initial densities 
of exactly 5 ml−1. For the medium and large jars, it was 
impractical to add a precise number of individuals to attain 

starting densities of 5 ml−1, so we subsampled individuals 
from stock cultures of known densities to create initial densi-
ties of approximately five individuals ml−1. Each combination 
of jar size and species pairing was replicated 12 times, for a 
total of 108 experimental microcosms. To confirm the results 
of previous experiments that have shown that these species 
compete (Gause 1934, Vandermeer 1969, Cadotte  et  al. 
2006, DeLong and Vasseur 2012), we also established 10 
replicate single-consumer cultures of each species at the large 
jar size and report those results in Supplementary material 
Appendix 1.

Sampling and census

On day two and every two days thereafter, jars were shaken 
to homogenize the distribution of microzooplankton and a 
0.3 ml subsample was removed. Subsamples were carefully 
scanned under a dissecting microscope to count the num-
ber of individuals of each species. Then, subsamples were 
returned to the jars (i.e. non-destructive sampling). In prac-
tice, a small amount of liquid (free of protists and/or rotifers) 
was left behind on the counting plates, meaning that our 
sampling procedure gradually reduced the volume of liquid 
within jars over time. This effect was only noticeable in the 
small jars beginning after day 36.

On day eight and every eight days thereafter, 9% of the 
fluid (including protists and/or rotifers) in each jar (0.09 ml 
for small jars, 0.9 ml for medium jars, 7.2 ml for large jars) 
was removed in a laminar flow hood and replaced with new 
sterile media (made as above, except without the addition of 
bacteria) at a volume equal to 10% of the nominal culture 
volume (0.1 ml for small jars, 1 ml for medium jars, 8 ml for 
large jars). We replaced a larger volume of medium than we 
removed to account for evaporation and medium lost during 
sampling.

Individual jars were removed from the experiment once 
competitive exclusion had been observed. Competitive 
exclusion was defined as the absence of one of the two com-
peting species in the 0.3 ml subsample and, for the medium 
and large jars, from an additional 10% subsample (1 ml for 
medium jars, 8 ml for large jars). If species were not found 
in the first sample but could be seen in the 10% subsample, 
we instead used the 10% subsample to estimate the patch 
density on that day and the jar was kept in the experiment. 
We ended the experiment on day 72 after observing the last 
exclusion in our competitive pairings.

Analysis of competitive outcomes and mean 
densities

To assess the effects of demographic stochasticity on com-
petitive outcomes, we compared exclusion frequency for 
the aurelia–caudatum, aurelia–philodina and philodina–
caudatum pairings across jar sizes. We tested the effect of jar 
size on competitive outcome statistically using a logit model 
(family: binomial; exclusion by the superior competitor was 
scored as 1, 0 otherwise), with species pairing and jar size as 
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categorical explanatory variables. All jars had the same initial 
and maximum densities, differing only in their initial and 
maximum absolute abundances. In addition, environmental 
conditions and initial resources were the same for jars of all 
sizes. Thus, jar size was treated as a proxy for the strength of 
demographic stochasticity.

We examined the effects of jar size on densities over time 
by comparing the 95% confidence intervals of mean densi-
ties in different jar sizes. We focus on estimating and report-
ing experimental means and their uncertainties but note 
that if the 95% confidence intervals of two means do not 
overlap, the difference between the means is generally con-
sidered significant. Using confidence intervals of densities 
over time allowed us to broadly (and conservatively) compare 
population trajectories in the different jar sizes.

Part 2. Stochastic simulations of consumer–resource 
dynamics

We used simulations of a simple stochastic consumer–
resource model to understand how demographic stochastic-
ity could alter competitive outcomes and mean densities over 
time in two-consumer, non-neutral communities. The model 
describes two consumers (N1, N2) competing for a shared 
resource (R), the deterministic version of which is as follows 
(MacArthur 1970):

dR
dt

rR
R
K

a RN a RN= −





− −1 1 1 2 1 	 (1)

dN
dt

e a RN d N1
1 1 1 1 1= −

dN
dt

e a RN d N2
2 2 2 1 1= −

where r is the density-independent growth rate (i.e. births 
minus deaths) of the resource, K is the carrying capacity of 
the resource, ai is the area of attack of consumer i (propor-
tional to the size of the system), ei is the conversion efficiency 
of consumer i, and di is the density-independent per capita 
mortality rate of consumer i.

When only a single consumer is present in model 1, the 
resource R has a stable equilibrium (R*) equal to di/eiai. 
This equilibrium is the lowest abundance/density of the 
resource at which consumer i has a non-negative growth 
rate. In the two-consumer case, the system will approach 
or oscillate towards the lowest of these R*’s, meaning that 
the consumer with the lowest R* will ultimately exclude 
its competitor (Tilman 1982). Differences in consumers’ 
R* are known as fitness inequalities in ecology (Chesson 
2000, Adler  et  al. 2007), which we describe using the 
formula (Pedruski et al. 2015):
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R
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N

N

1

2

2

1

*

*
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*− 	 (2) 

where RNi

*  is the stable equilibrium for the resource when 
only Ni is present. Using the above formula, the fitness 
inequality is 0 when consumers have identical R*’s and is 
positive when R RN N1 2

* *>  (i.e. when consumer N1 requires 
more of the resource to persist).

An analogous stochastic version of model 1 can be derived 
by assigning probabilistic intensity functions (i.e. transition 
rates) to discrete demographic events (e.g. births, deaths). 
This type of model, also known as a jump process, can be 
simulated with Gillespie’s stochastic simulation algorithm 
(SSA) to produce samples from a continuous-time stochas-
tic process (Gillespie 1977, Black and McKane 2012). The 
stochastic analogue of model 1 has the following six discrete 
events:

R R RRbbirth : 1 1 → + 	 (3)

R R RR m m R e a RN e a RNdeath : 1 2 1 1 1 2 2 21 1 1+( )+ −( ) + −( ) → −

R N R N R Ne a RNdeath birth, : , ,1 1 1
1 1 1 1 1 → − +

R N R N R Ne a RNdeath birth, : , ,2 2 2
2 2 2 1 1 → − +

N N Nd N
1 1 1

1 1 1death :  → −

N N Nd N
2 2 2

2 2 1death :  → −

with terms b1, m1, m2 representing explicit birth (density-
independent) and death rates (density-independent and 
density-dependent), which replace terms r and K. Each equa-
tion above an arrow represents the probability that a transi-
tion occurs in the community. For example, the first line (R 
birth) represents the birth of a resource (i.e. the population 
size of R increases by 1) and occurs with probability equal 
to Rb1. The expected value of model 3 matches model 1 for 
large population sizes, except for differences arising from lat-
tice effects (due to discrete individuals; Henson et al. 2001) 
and non-linear averaging (Jensen 1906, Ruel and Ayres 
1999, Chesson et al. 2005, Inouye 2005). Further details on 
developing the stochastic model are given in Supplementary 
material Appendix 2.

We simulated model 3 using the SSA across 11 different 
sets of parameter values, beginning with the neutral case (i.e. 
both consumers had identical demographic parameters), then 
modifying the death rate of consumer 2 so that its R* value 
dropped in 5% increments, equivalent to fitness inequality 
increments of approximately 0.1 (Eq. 2). Parameter values 
for these simulations (Table 1) were chosen such that: 1) they 
produced dynamics broadly similar to those observed in our 
experimental system; 2) quasi-equilibria for consumers were 
near what we observed in our experimental single-consumer 
cultures; 3) the quasi-equilibrium value of the resource was 
higher than the consumer equilibria by at least two orders 
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of magnitude; and 4) consumer death rates were high. In 
preliminary testing, we found that stochastic simulations of 
consumer–resource models with a highly abundant resource 
such as bacteria (with densities as high as 108 cells per ml) 
were computationally impractical using our methods. Thus, 
point 3) is a compromise to speed computation by assuming 
that the bacterial resource grows, dies, and is consumed in 
multiples of individuals.

For each set of parameter values, we simulated model  
3 10 000 times using the Gillespie algorithm (Gillespie 1977, 
Black and McKane 2012) for two different initial population 
sizes (and maximum population sizes via resource carrying 
capacity), which differed by an order of magnitude in terms 
of absolute abundance: small (R(0) = 1000; N1(0) = N2(0) = 5), 
and large (R(0) = 10 000; N1 (0) = N2(0) = 50). Simulations 
were run to t = 1000, at which point competitive exclu-
sion had been observed in most of the neutral simulations, 
where the two consumer species had identical R* values 
(competitive exclusion happened earlier as fitness inequality 
increased).

To ensure that simulations of small and large population 
sizes differed only with respect to the strength of demographic 
stochasticity, we scaled all density-dependent parameters so 
that simulations began in the same area of state space (with 
respect to density) and so that the different population sizes 
experienced the same degree of density-dependence through-
out (Nisbet et al. 2016). Specifically, the density-dependent 
death rate of the resource, m2 and the attack rates, ai, which 
represent the proportion of the total habitat area subject to 
attack, were reduced by a factor of 10 for the large population 
sizes. R code for the simulations is available on the Dryad 
repository.

Analysis of simulations

We quantified the proportion over time of competitive exclu-
sions of the weaker consumer by the superior consumer (i.e. 
simulations where the superior consumer outlasts the weaker 
consumer) across the different fitness inequalities and popu-
lation sizes. Further, we assessed how population size affected 
mean densities over time. To do so, for each parameter 

combination of the stochastic model, we calculated the mean 
density (and its 95% confidence interval, as in the experi-
ment) of the 10 000 replicate simulations for each discrete 
time point. As for the experimental data, we then assessed 
whether these intervals overlapped.

Data deposition

Data are available from the Dryad Digital Repository: 
< http://dx.doi.org/10.5061/dryad.c3bm2j9 > (Legault et al. 
2019).

Results

Competitive exclusion in the experimental microcosms

Based on the competitive hierarchy described above, we 
expected the aurelia–caudatum pairing to be character-
ized by a small fitness inequality favoring the exclusion of 
Paramecium aurelia by P. caudatum. These assumptions 
agreed with our experimental findings: P. aurelia was the 
weakest competitor in the aurelia-caudatum pairing and was 
excluded by P. caudatum in 10 of 12 replicates of the large 
jar size (Fig. 1a). The exclusion frequency in the medium 
jars was similarly high; P. aurelia was outcompeted in 11 of 
12 replicates. In the small jars, however, where the impact 
of demographic stochasticity was strongest, the exclusion 
frequency was half that of the other sizes, with P. aurelia 
excluded in only 5 of 12 replicates. Consistent with these 
qualitative differences, there was a statistically significant 
difference between exclusion frequency in small jars versus 
those in the large or medium jars (chance of being excluded, 
compared to large [logit scale]: estimate = −1.945, standard 
error = 0.971, p-value = 0.045).

The weakest competitor in the aurelia–philodina pairing,  
P. aurelia, was excluded in all replicates across jar sizes 
(Fig. 1b). Similarly, for the philodina–caudatum pairing,  
P. caudatum was excluded in all replicates and population 
sizes (Fig. 1c). As there were no differences in the ultimate 
exclusion outcomes across jar sizes for the aurelia–philodina 

Table 1. Parameter values for the neutral simulations of the stochastic consumer–resource model. The consumer attack rates, ai, and resource 
death rate, m2, were scaled by population size to ensure simulations started in the same area of state space (with respect to density). Non-
neutral simulations also used these parameter values, lowering only the death rate of consumer 2 in increments of 0.01 (making consumer 
2 an increasingly superior competitor).

Model parameters Description Values

b1 resource birth rate 1.2
m1 resource death rate (density-independent) 0.2
m2 (small) resource death rate (density-dependent) 1/10 000
m2 (large) 1/100 000
a1 (small) attack rate, consumer 1 0.04
a1 (large) 0.004
a2 (small) attack rate, consumer 2 0.04
a2 (large) 0.004
e1, e2 efficiencies, consumers 1 and 2 0.02
d1, d2 death rate, consumer 1 and 2 0.2
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and philodina–caudatum pairings, statistical analysis was not 
necessary for these data.

Competitive exclusion in the stochastic simulations

When the fitness inequality was 0 (i.e. consumers had iden-
tical R*s), simulations with small or large population sizes 
had nearly identical outcomes in terms of the identity of the 
‘winning’ consumer. For the large population sizes (Fig. 2, 
solid lines), by t = 1000, consumer 1 had excluded consumer 
2 in 47.80% of simulations and consumer 2 had excluded 
consumer 1 in 48.16% of simulations. Of the remaining 
simulations, 325 (3.25%) exhibited joint exclusion/extinc-
tion, meaning both species had gone extinct between time 
steps (while the model was simulated in continuous-time, we 
observed the system only at discrete times), and 79 (0.79%) 
still had both species (i.e. transient coexistence). For the small 
population sizes (Fig. 2, dashed lines), the percentages were 
quite similar: consumer 2 was excluded in 48.55% of simula-
tions, consumer 1 was excluded in 47.95% of simulations, 
and both were excluded in 3.5% of simulations (no tran-
sient coexistence was observed). However, exclusion occurred 
much earlier for small population sizes (Fig. 2).

When fitness inequalities were non-zero (i.e. non-neutral), 
competitive outcomes for small and large populations differed 
substantially in two ways: 1) as in the neutral case, exclusion 
occurred earlier for small population sizes across all fitness 
inequalities (Fig. 2); and 2) the proportion of simulations in 
which the ‘superior’ consumer won was consistently lower 

for small population sizes (Fig. 2) across all fitness inequali-
ties. In the deterministic version of the consumer–resource 
model, any non-zero fitness inequalities between consumers 
will always lead to the exclusion of the weaker competitor 
(i.e. consumer with the largest R*). In general, this is what 
was observed for non-neutral simulations with large popula-
tion sizes, where the proportion of simulations won by the 
superior competitor rapidly approach 1.0 as fitness inequali-
ties increased. In contrast, stochasticity in simulations with 
small population sizes led to many simulations where the 
weaker consumer excluded (i.e. outlasted) its ‘superior’ rival 
(Fig. 2). As fitness inequalities increased from 0, the propor-
tion of small simulations where the superior consumer won 
increased only gradually, well below the increases seen for the 
large simulations. Only when fitness inequalities were very 
large (e.g. consumer 2 had an R* 50% lower than consumer 
1, corresponding to a fitness inequality of 1.5) were these 
proportions similar to those of the large populations (Fig. 2). 
Such differences in the proportion of simulations won by the 
superior consumer were not due to differences in the timing 
of exclusion, since by t = 1000, 99% of all simulations had 
experienced exclusion.

Mean densities in the experimental microcosms

For the aurelia–caudatum pairing, where the fitness inequal-
ity between competitors was small, both species had con-
sistently lower densities in small jars relative to large jars 
(Fig. 3a–b). In other words, when demographic stochasticity 
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Figure 1. Proportion over time of experimental jars in which the superior competitor excluded the weaker competitor. Paramecium aurelia 
was the weakest competitor in the (a) aurelia–caudatum and (b) aurelia–philodina pairings, while Paramecium caudatum was the weakest 
competitor in the (c) philodina–caudatum pairing. Different colored lines represent the proportion surviving (out of 12 replicates) in differ-
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(x-axis), indicating the final proportion of jars where the superior competitor won (y-axis). Bars and asterisks in (a) indicate significant 
differences between jar sizes in the final proportion of exclusions (generalized linear model, binomial response variable).
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was strong, both consumers had lower mean densities. When 
fitness inequalities were larger, as in the aurelia–philodina and 
philodina–caudatum pairings, densities of the weaker com-
petitors were also lower in small jars compared to large jars 
(Fig. 3c, e). However, jar size appeared to have less severe 
effects on the mean densities of the superior competitors 
in the aurelia–philodina and philodina–caudatum pairings 
(Fig. 3d, f ). Densities in the medium-sized jars (not shown 
in Fig. 3 for clarity) were generally between those of the large 
and small jars, or were similar to the large jars (Supplementary 
material Appendix 1 Fig. A3).

Mean densities in the stochastic simulations

Demographic stochasticity also affected the mean densities 
of consumers in the simulations. In general, early in the time 
series the mean densities of both consumers were similar 
for small and large population sizes (Fig. 4). Over the long 
term, however, mean densities were generally lower for small 
population sizes (95% confidence intervals for expected 
values generally did not overlap). Furthermore, clear qualita-
tive differences in overall dynamics emerged between small 
and large simulations, as evidenced by changes in the ampli-
tude and periodicity of mean densities. These results were 
consistent across all 11 fitness inequalities.

Discussion

We explored the effects of demographic stochasticity on 
competition using experimental communities of micro-
zooplankton and simulations of continuous-time stochas-
tic models, demonstrating that stochasticity (here driven 
by absolute abundances) can alter competitive outcomes 
and other aspects of community dynamics in non-neutral 
communities. In particular, in both simulated and micro-
cosm communities, demographic stochasticity reduced 
the exclusion frequency of weaker competitors, led to 
earlier exclusions, and generally lowered mean densities  
over time.

One of our key findings, that population size can alter 
competitive outcomes in microzooplankton communities, 
provides empirical support for existing ecological theory 
concerning the effects of demographic stochasticity in sim-
ple, non-neutral communities. Orrock and Fletcher (2005) 
and Pedruski  et  al. (2015) both used discrete-time models 
of consumer–resource dynamics and an approximation of 
demographic stochasticity to show that it can allow weaker 
competitors to out-compete superior competitors when 
niche differences were small, but not when they were large. 
Similarly, Okuyama (2015) used continuous-time models of 
consumer–resource dynamics to show that demographic sto-
chasticity can lead to competitive outcomes not predicted by 
the deterministic model. Our simulation results extend such 
work by examining the effects of demographic stochasticity 
on competitive outcomes across different absolute abun-
dances and fitness differences. In particular, across 11 sets 
of stochastic simulations, we found that the identity of the 
winning species was more variable for small population sizes 
compared to large population sizes. Specifically, the propor-
tion of simulations won by the superior competitor was gener-
ally lower and occurred faster in small populations compared 
to large populations across a wide range fitness inequalities. 
Only when there were large fitness inequalities were exclu-
sion frequencies and times similar between population sizes. 
Furthermore, our experimental findings demonstrate how 
the effects of demographic stochasticity can manifest in real, 
non-neutral communities: we found that when fitness dif-
ferences were small, a weaker competitor (Paramecium aure-
lia) was able to exclude its superior rival (P. caudatum) more 
frequently in small jars compared to populations in larger 
jars with otherwise comparable environmental conditions. 
However, when fitness differences were large, as they were 
in the other species pairings, jar size had no discernible effect 
on competitive outcomes; that is, the species with the highest 
competitive ability always excluded the other. This finding 
is broadly consistent with Fox (2002), which found that the 
‘R* rule’ was not an accurate predictor of competitive domi-
nance in protist microcosms when the gaps between species’ 
R*s were smaller. Thus our experimental results are consistent 
with previous theoretical and empirical studies, providing 
support for the notion that absolute abundance is an impor-
tant consideration when assessing the relative importance of 
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Figure  2. Proportion over time of the stochastic simulations in 
which the superior consumer (consumer 2) excluded the weaker 
consumer (consumer 1). Shown are the proportions for 11 different 
fitness inequalities, ranging from the neutral case (fitness inequal-
ity = 0, red) to one where consumer 1 has twice the R* as consumer 
2 (fitness inequality = 1.5; purple). Dotted lines show the results for 
simulations with small population sizes and solid lines show the 
results for simulations with large population sizes. Other possible 
outcomes were exclusion of the superior competitor (majority of 
cases), transient coexistence, or joint exclusion (no winner of com-
petition). See Table 1 for the parameter values used in the neutral 
simulations (i.e. when consumers had the same fitness).



1711

niche versus stochastic processes in communities (Adler et al. 
2007, Gravel et al. 2011, Vellend et al. 2014).

In addition to observing differences in competitive out-
comes, we found that jar size affected the densities over time 
of consumers in both our experimental jars and in our simu-
lations. In the aurelia–caudatum pairing, where fitness dif-
ferences were small (P. aurelia and P. caudatum), each species 
had lower mean densities in small jars compared to large jars. 
When fitness differences were larger, as in the philodina–
caudatum and aurelia–philodina pairings, only the densities 
of the weaker competitor were reduced in the presence of 
strong demographic stochasticity. Similarly, in the simula-
tions, initial densities in the small populations were lower 
over the long-term than those in the large populations for 
both consumers.

How does small population size interact with demographic 
stochasticity to affect competitive outcomes and mean densi-
ties in our experimental and simulated communities? One 
answer is that small populations have fewer individuals and 
therefore fewer stochastic events governing abundances over 
time. This can lead to large deviations from expected out-
comes such as who wins competition in essentially the same 
way that a small number of coin flips will not necessarily pro-
duce the expected outcome of 50% tails. When processes are 
non-linear, such added variation can also affect mean out-
comes, including densities over time. Large populations are 
also capable of reaching finer fractional densities (e.g. 0.001 
individuals ml–1) whereas small populations are more coarsely 
discretized, so lattice effects may also lead to larger devia-
tions from expected densities (Henson et al. 2001), Finally, 

stochastic extinctions, which have higher probability in 
smaller populations, will also lower mean densities compared 
to deterministic dynamics.

We likely did not observe the theoretically predicted long-
term increases/decreases in the densities of weaker/superior 
consumers in our experimental system for two reasons: 1) our 
experiment did not persist long enough; and 2) our species did 
not experience the same degree of demographic stochasticity 
as in our simulations. Regarding 2), this can be seen by com-
paring Fig. 3, 4, which highlight the often large differences in 
abundance between the two species competing in the experi-
ment, compared to the mostly similar consumer abundances 
in the simulations. For instance, in the aurelia–philodina 
pairing, P. aurelia had approximately four-fold higher abso-
lute abundances over time than its competitor P. caudatum. 
We intentionally chose to simulate consumers with similar 
absolute abundances as it meant that both consumers would 
experience similar degrees of demographic stochasticity for 
each simulation treatment. However, this choice also ignored 
the very real possibility that some consumers may have lower 
mean or maximum densities than their competitors (e.g. due 
to resource requirements), and therefore experience demo-
graphic stochasticity differently across habitat sizes. This was 
likely the case for some of our experimental jars.

Founder effects could have explained some of the differ-
ences we observed in competitive outcomes across popula-
tion sizes in our experiment; however, this effect was likely 
negligible. If founder effects were important, we would 
expect to see large differences over time between replicates of 
the small jars compared to replicates of larger jars due to the 
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Figure 3. Densities over time in the experimental microcosms. Shown are the densities of individual replicates and their means for the 
weaker competitors (top row) and superior competitors (bottom row) in each of the three competitive pairings (aurelia–caudatum, column 
1; aurelia–philodina, column 2; philodina–caudatum, column 3). Bold names represent the species being plotted in each panel. Also plotted 
are the 95% confidence intervals for the mean densities (shaded areas). Due to replicates being removed once exclusion had occurred, some 
intervals are especially large or missing at different time points. For clarity, only small (red) and large (blue) jars are shown here (see 
Supplementary material Appendix 1 for medium jars). Note the different scales on both axes for each panel.
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stronger influence of genetic drift in the small jars over and 
above the effects of demographic stochasticity (Dobzhansky 
and Pavlovsky 1957). However, the coefficients of variation 
across replicates were not consistently higher for the small jars 
(Supplementary material Appendix 3). Moreover, the stock 
cultures used for our experiment had spent more than 1.5 
years at conditions similar to those used in the experiment, 
representing thousands of generations in a constant environ-
ment. As a result, the standing genetic diversity of the protists 
used in our competitive trials was likely to be low, meaning 
that different jar sizes probably had similar starting diversities 
and genetic composition.

Previous experiments have shown that the species consid-
ered here strongly compete (Gause 1934, Vandermeer 1969, 
Cadotte et al. 2006, DeLong and Vasseur 2012). As discussed 
in Supplementary material Appendix 1, comparison of the 
two-consumer laboratory cultures with single-consumer cul-
tures show that dynamics are clearly affected by the presence 
of a second consumer (in particular, lowering mean densi-
ties), thus confirming that the species strongly compete. The 
biological mechanisms of competition between our three 
focal species are not precisely known, although it is likely 
that they experience both direct (e.g. allelopathy) and indi-
rect interactions (e.g. resource competition).

We were unable to completely disentangle the effects of 
demographic stochasticity from potential (deterministic) 
habitat-size artifacts in the experiment, meaning that our 
results should be considered with some caution. Possible hab-
itat-size artifacts include wall effects, behavioral responses to 

habitat size, differences in spatial heterogeneity, and chemical 
effects related to surface area to volume ratios (Englund and 
Cooper 2003), many of which could apply to our labora-
tory system. Unfortunately, controlling for these artifacts can 
be extremely difficult if not impossible in any study using 
habitat size manipulations to understand stochasticity. In 
particular, single-consumer cultures of different habitat sizes 
cannot provide controls for all habitat-size artifacts. For our 
system, this is revealed by single-consumer simulations with 
small and large population sizes, which show large differences 
in temporal dynamics and densities between population sizes 
(Supplementary material Appendix 4). Since demographic 
stochasticity alone alters density and dynamics in single-con-
sumer cultures, different jar sizes with single consumers can-
not provide controls for deterministic effects of jar size. One 
possible way forward would be to fit stochastic models to the 
experimental data for both single- and two-species communi-
ties. In principle, a fitted stochastic model could account for 
variation arising from demographic stochasticity alone and 
make it possible to identify additional variation in the data 
that could be attributed to jar size effects. However, we were 
not able to fit models that were good enough to be used for 
inference (Supplementary material Appendix 1). Importantly, 
while this caveat applies to our experimental results, it does 
not apply to our simulation results where, by design, com-
munity size was not confounded with any other factors 
and results were qualitatively consistent with the laboratory 
experiment. Practical solutions to habitat-size artifacts might 
also be possible, but it is difficult to envision manipulations 
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free of any size-related confounds. For instance, using fine-
meshed compartments of varying sizes in identically sized 
containers would avoid effects related to the edges of contain-
ers, but could introduce refugia for bacterial resources outside 
the mesh.

We also consider possible errors that could have been 
introduced through differences in sampling intensity and 
conclude that these are unlikely to be important. As described 
in the methods, we sampled a larger fraction of the volume 
of small jars (30%) compared to medium or large jars (10%). 
This difference in sampling intensity allowed us to include 
more experimental replicates but it could potentially influ-
ence estimates of exclusion frequency. However, the results 
suggest these sampling effects, if present at all, were minimal. 
All competitive pairings were subject to the same sampling 
scheme and so if sampling effects were driving the results, we 
would expect to see similar differences in exclusion outcome 
across all species pairings. On the contrary, we only observed 
differences in exclusion in the aurelia–caudatum pairing. 
Second, all P. aurelia exclusions observed in the medium and 
large aurelia–caudatum jars occurred after long, nearly mono-
tonic declines in population densities (Fig. 3a blue lines) and 
generally when its competitor, P. caudatum, had densities at 
least an order of magnitude greater (Supplementary mate-
rial Appendix 3). Following this decline, there were also nine 
cases where our initial samples of medium or large jars on a 
given day suggested exclusion (five medium, four large) but 
where we then found the missing species in a subsequent 
10% sample. In all nine cases, P. aurelia densities never sub-
sequently increased. Therefore, it is likely that any differences 
in sampling intensity would have affected only estimates of 
the timing of exclusion and not its outcome. Finally, our 
consumer–resource simulations could not be affected by sam-
pling effects (since complete censuses were recorded) and they 
also showed clear differences in competitive outcomes among 
population sizes due to demographic stochasticity (Fig. 2).

As argued by Vellend (2010, 2016), the effects of demo-
graphic stochasticity (i.e. ‘ecological drift’) on community 
dynamics are analogous to the effects of genetic drift on 
evolutionary dynamics. This is because both ecological and 
genetic drift involve stochastic processes: for ecological drift 
these are the effectively random demographic processes (birth, 
death, migration, maturation) that affect population sizes; for 
genetic drift, these are factors such as the random sampling 
of alleles every generation. As far back as Wright (1931), evo-
lutionary biologists have recognized that at small population 
sizes, genetic drift can interfere with selection, for instance 
by preventing a beneficial allele from reaching fixation. There 
is now a vast literature concerning the effects of genetic drift 
and population size on fixation probabilities (Patwa and 
Wahl 2008), as well as numerous empirical studies demon-
strating that small population sizes can lead to evolutionary 
outcomes not predicted by deterministic models of evolution 
(Dobzhansky and Pavlovsky 1957, Weber 1990, Lynch and 
Conery 2003, Paland and Schmid 2003, Petit and Barbadilla 
2009). Studies of the consequences of ecological drift are less 

common, in part because the processes involved are complex: 
there are typically many stochastic processes occuring at the 
population- and community-level (Melbourne and Hastings 
2008) and they are often non-independent. Moreover, ecolo-
gists are generally less willing to make the simplifying assump-
tions common to evolutionary studies of genetic drift, such 
as the constant population size required by Kimura’s (1957) 
equations for the probability of fixation of beneficial alleles. 
Nevertheless, such assumptions may be reasonable for some 
ecological systems (Hubbell 2001), and additional synthesis 
between evolutionary and ecological conceptions of drift may 
be possible.

Demographic stochasticity is ubiquitous in natural sys-
tems and represents a significant source of intraspecific 
variation in populations and communities. Recognizing the 
potential role for such stochasticity in non-neutral com-
munities is important, as it can produce outcomes not pre-
dicted by common, deterministic models of competition 
and other processes. Future work should focus on how to 
better characterize and quantify the impacts of demographic 
stochasticity in natural, non-neutral communities and in 
more realistic continuous-time descriptions of such systems. 
Even in a laboratory-microcosm system such as ours with 
tight experimental control, this is not easy. For instance, to 
definitively isolate the effect of demographic stochasticity in 
real communities from other possible confounders, such as 
edge effects or jar effects, it is necessary to fit continuous-
time stochastic models to the relevant data, a step that must 
be preceded by the development and testing of appropri-
ate stochastic population models (Melbourne and Hastings 
2008). However, given the potential for demographic sto-
chasticity to produce outcomes that diverge from determin-
istic expectations, such work may be necessary if we are to 
better predict how non-neutral communities assemble and 
change with time.
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